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method provides an algebraic

approach to the large-signal analysis of exponential-diode

detector circuits that avoids the limitations imposed by

truncated series approximations. The resulting closed-form

algebraic expressions account for the details of operation in

both the square-law and linear regions, and are consistent with

numerical simulations. At high signal levels the results agree

with the predictions of a piecewise-linear analysis.

INTRODUCTION

The current success of numerical simulation techniques

obscures the ability of approximate algebraic methods to

provide global insights into the behavior of certain nonlinear

circuits. It is often cumbersome to obtain such insights

numerically because of the numerous simulations required.

Here the Ritz-Galerkin (RG) method [1]-[5] is used to

obtain a closed-form algebraic solution that relates the video

output voltage of a microwave detector circuit to the incident

rf power. This solution provides a conceptual bridge between

a conventional small-signal quasi-linear analysis of the

“square-law” behavior [6], and a strictly high-level piecewise

analysis of the “linear” behavior. It will be shown that the

solution is valid over the full dynamic range from “square law”

to “linear”, and that the slope of the transfer function can

exceed “square law” under certain conditions.

RITZ-GALERKIN ANALYSIS OF A DIODE DETECTOR

The diode in Fig. 1 is modeled as an exponential

device obeying

i = Z$eAv -1) (1)

in series with a resistanceR.. In (1), A=e/(nkT), n is the diode
ideality factor, and k is Boltzmann’s constant. The junction

capacitance Cj is represented as voltage-invariant since it plays

no important part in detector operation.
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Simplified detector equivalent circuit for large-

signal analysis by Ritz-Galerkin method. The

diode is modeled as an ideal exponential diode

with a series resistance R, and junction

capacitance C, .

A relation is sought between the incident rf power Pkc

and the video output voltage v.., . Pti. is the power imPinging

on the input port (X-X’) of the detector circuit, regardless of

its matchkg or nonlinearity. P.h is that portion of PfflCactually

absorbed by the nonlinear detector circuit. The rest of Pw. is

reflected, and can include harmonics and possibly subharmon-

ic of the input frequency.
ml

Warner’s small-signal detector analysis [6] assumed

classical matching for maximum power transfer (MPT) to the

diode, so that P~c = P.k . An MPT theorem for nonlinear

resistive (memoryless) circuits has been obtained by Wyatt [7],

but his generalization [8] to nonlinear circuits with memory

leads to the requirement for the adjoint of a causal operator,

which is anticipative and therefore nonphysical.

Practical detectors are normally operated in a non-MPT

mode, and the question of matching for MPT does not arise.

Accordingly, in the present analysis, the differential equation

of the detector circuit is solved approximately, yielding a

relation between the rf generator voltage vJt) and the video

voltage VW, . Then P’mc is found from v,(t).

The differential equation for Fig. 1 is
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a[exp{ (.x-y) –&+y) -kc } –1] + g[(;-~) -b(~+~)] =a~ +J+y

(2)

where x = Avg is the forcing function, and y = AvOUr is the

video output. Other quantities are: a = AR~Z,, b = (RE+

R5)/R~ , g = CilC~, k = A&I. . Q = IJI, is a bias-current

parameter. The symbols”o” and “00” indicate d/d~ and d2/d&

respectively, where z = t/(RLC,J. For an input at frequency o+

X(7) = XCC3S(VT) (3)

where v = wR~C~ and X = AVg.

To apply the RG method, the differential equation is

represented in the form

~[d/dt, y,x]=O (4)

where & is a nonlinear operator. The exact solution y(z) is

approximated by

where the ~~(~) are linearly independent functions and the a~

are adjustable coefficients. In general

It can be shown [10] that the magnitude of the residual ~(~) is

minimized by satisfying N Ritz conditions

-fZ

resulting in N simultaneous algebraic equations in N

unknowns.

In the present case x(~) is periodic, so one could set

where YOis the dc component of the video output, and Y1 and

9 are the amplitude and phase of its ripple component. A

simplification is to neglect the ripple. Then all that remains is

a single unknown

~ = Y. = AVO = constant,

and only one Ritz condition is needed:

2Z

f
~[ d/dz, j, X ]d(vT) = O. (9)

o

From (2) and (3)

C[ d/dr, j x ] = a [exp{Xcos(vr)-[( l+b)YO+kC]}-l]

-vgsin(v~) - a; - Y.

(lo)

Performing the integral indicated in (9):

[)%(x) = 1+(+%exp{(l +b )Yo + q (11)

where L(X) is the zero-order modified Bessel function [11] of

the first kind and argument X. The disappearance of the

capacitance term g is a consequence of ignoring the ripple

component of the video voltage. If one sets R~ = CO,ZO = O,

R, = 0, and R, = 0, then this result reduces to eqn.(4) of [9].

As in linear theory the incident power is

V*2
Pti=— (12)

8R
8

so denormalizing (11) and using (12), the sought nonlinear

algebraic relationship between PtiCand VO is

%(AJKZ ) ‘

(1‘t ‘3)’W{[l‘wAvo+AR}O}
(13)

This expression includes the bias current 10 . The actual

detector response can be found from (13) by calculating the

input quantity Pk= as a function of the output quantity V., an

operation requiring the inverse of the modified Bessel function.

In the absence of input power, the static output VO(0) is found

by solving (13) for P~c = O, in which case IJO) = 1.0. Then

the change in VOin response to a finite PtiC is is given by

I A VO= VO(PJ - VO(0). (14) I

The family of curves in Fig. 2 was obtained from (13)

and (14), using typical diode and circuit parameters. The

anal ysis correctly predicts both “square I aw’! and !!linear!!

regions of operation, as well as the effect of varying the load

R.. Note that low values of R~ can lead to slopes much

steeper than square-law over certain ranges of Pi.C , an effect

also seen in measured data, and in agreement with Spice

simulations.

F@re 3 shows the calculated dependence of the
voltage sensitivity yv = AVJPmCon the incident power. The
values are typical of those for real Schottky-diode detectors.
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Transfer characteristics of a Schottkv-diode

video detector circuit calculated by ‘the Ritz-

Galerkin method. The effect of varying the

load resistance R~ is shown. The diode

parameters are

1, = 104A

A = 40 V-l
R~=10s2,

while the circuit parameters are

R8=50Q

10 = o.
The small circles indicate the results of Spice

simulations for R~ = 10 kQ .

COMPARISON WITH PIECEWISE-LINEAR ANALYSIS

If the diode is represented as a resistor R, in series with

a switch that is open for reverse bias (vsO) and closed for

forward bias (i>O), then it is found that the relation between

Phc and VOis

where a = VJVg is the solution of

I Ji’7 = a[nb + arccoaa].
(16)

The resulting true-linear-law response, towards which the

responses predicted by the RG method are asymptotic for PmC
+ m, is also shown in Fig. 2.
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Figure 3.

INCIDENT POWER P,nC(dBm)

Calculated dependence of the voltage

sensitivity Yv on the incident power level. The

device and circuit parameters are the same as

for Fig. 2.

SUMMARY AND CONCLUSIONS

The Ritz-Galerkin method provides a closed-form

sohrtion for the full dynamic range of detector circuits, from

“square-law” to “lirwar”, including the effects of video loading

and bias current. Greater-than-square-law slopes are seen

under certain conditions, in agreement with numerical simula-

tions. At high input levels the results approach the predictions

of a piecewise-linealr analysis.
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