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ABSTRACT

The Ritz-Galerkin method provides an algebraic
approach to the large-signal analysis of exponential-diode
detector circuits that avoids the limitations imposed by
truncated series approximations. The resulting closed-form
algebraic expressions account for the details of operation in
both the square-law and linear regions, and are consistent with
numerical simulations. At high signal levels the results agree
with the predictions of a piecewise-linear analysis.

INTRODUCTION

The current success of numerical simulation techniques
obscures the ability of approximate algebraic methods to
provide global insights into the behavior of certain nonlinear
circuits. It is often cumbersome to obtain such insights
numerically because of the numerous simulations required.

Here the Ritz-Galerkin (RG) method [1]-[5] is used to
obtain a closed-form algebraic solution that relates the video
output voltage of a microwave detector circuit to the incident
rf power. This solution provides a conceptual bridge between
a conventional small-signal quasi-linear analysis of the
"square-law" behavior [6], and a strictly high-level piecewise
analysis of the "linear" behavior. It will be shown that the
solution is valid over the full dynamic range from "square law"
to "linear", and that the slope of the transfer function can
exceed "square law" under certain conditions.

RITZ-GALERKIN ANALYSIS OF A DIODE DETECTOR

The diode in Fig. 1 is modeled as an exponential
device obeying

i=I(e" -1 o

in series with a resistance R.. In (1), A=e/(nkT), n is the diode
ideality factor, and k is Boltzmann’s constant. The junction
capacitance C; is represented as voltage-invariant since it plays
no important part in detector operation.
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Figure 1. Simplified detector equivalent circuit for large-
signal analysis by Ritz-Galerkin method. The
diode is modeled as an ideal exponential diode
with a series resistance R, and junction
capacitance C, .

A relation is sought between the incident rf power P,
and the video output voltage v,,,. P, is the power impinging
on the input port (X-X’) of the detector circuit, regardless of
its matching or nonlinearity. P,,, is that portion of P;, actually
absorbed by the nonlinear detector circuit. The rest of P, is
reflected, and can include harmonics and possibly subharmon-
ics of the input frequency.

Warner’s small-signal detector analysis [6] assumed
classical matching for maximum power transfer (MPT) to the
diode, so that P, = P, . An MPT theorem for nonlinear
resistive (memoryless) circuits has been obtained by Wyait [71,
but his generalization [8] to nonlinear circuits with memory
leads to the requirement for the adjoint of a causal operator,
which is anticipative and therefore nonphysical.

Practical detectors are normally operated in a non-MPT
mode, and the question of matching for MPT does not arise.
Accordingly, in the present analysis, the differential equation
of the detector circuit is solved approximately, yielding a
relation between the rf generator voltage v (1) and the video
voltage v,,, . Then F,, is found from v,(?).

The differential equation for Fig. 1 is
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alexp{(x-y)-b(y+y)-k{}-1] + gl(x-y)-b(y +y)]1=a{+y+y
@
where x = Av, is the forcing function, and y = Av,,, is the

video output. Other quantities are: a = ARJI,, b = (R+
RJ)R,, g=CJ/C,, k=ARI . T =1L/l is abias-current
parameter. The symbols"o" and "oo" indicate d/dv and d’/dv’
respectively, where © = ¢#/(R;C;). For an input at frequency w,

x(t) = Xcos(vt) &)

where v = wR,C; and X = AV,

To apply the RG method, the differential equation is
represented in the form

Eldidr,y, x]1 =0 @

where § is a nonlinear operator. The exact solution y(T) is
approximated by

N
7)) = Y a0,(xv) ®
k=1

where the y,(t) are linearly independent functions and the a,
are adjustable coefficients. In general

E[ didx, 5, x ] = e(z) # 0. ®
It can be shown [10] that the magnitude of the residual e(t) is
minimized by satisfying N Ritz conditions

T2

[Eldids, 5, x T )de = 0

Y

k=1, N O

resulting in N simultaneous algebraic equations in N
unknowns.

In the present case x(t) is periodic, so one could set

3
¥ = Y au(r) = Yy + Y,cos(vt+0) ®
1

where Y, is the dc component of the video output, and Y, and
0 are the amplitude and phase of its ripple component. A
simplification is to neglect the ripple. Then all that remains is
a single unknown

y = Yy = AV, = constant,

and only one Ritz condition is needed:

2n

[ €L dids, 3, x o) = 0. ©®
0
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From (2) and (3)
Eldidz, 5,x] =a [exp{Xcos(vr){(l+b)Yo+kC]}—1]

-vgsin(vt) - af - ¥,
(10

Performing the integral indicated in (9):

L = (1+¢+5) exp{(1+b )Y, + kg} OV
a

where I(X) is the zero-order modified Bessel function [11] of
the first kind and argument X. The disappearance of the
capacitance term g is a consequence of ignoring the ripple
component of the video voltage. If one sets R, = ,I, = 0,
R, = 0, and R, = 0, then this result reduces to eqn.(4) of [9].
As in linear theory the incident power is
2
e = Ve (12)
8R,

so denormalizing (11) and using (12), the sought nonlinear
algebraic relationship between P, and V,, is

L(AVBRP,, ) =

I V, R +R
[1 + 70 - i—j;)exp{{l * ; ’]AVO + ARJO}

s L

(13)

This expression includes the bias current [, . The actual
detector response can be found from (13) by calculating the
input quantity P, as a function of the output quantity V, , an
operation requiring the inverse of the modified Bessel function.
In the absence of input power, the static output V,(0) is found
by solving (13) for P, = 0, in which case I,(0) = 1.0. Then
the change in V, in response to a finite P, _is is given by

AV, = V(P,) - Vy0). (14)

The family of curves in Fig. 2 was obtained from (13)
and (14), using typical diode and circuit parameters. The
analysis correctly predicts both "square law" and "linear"
regions of operation, as well as the effect of varying the load
R;. Note that low values of R, can lead to slopes much
steeper than square-law over certain ranges of P, , an effect
also seen in measured data, and in agreement with Spice
simulations.

Figure 3 shows the calculated dependence of the
voltage sensitivity y, = AV,/P,_ on the incident power. The
values are typical of those for real Schottky-diode detectors.
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Figure 2. Transfer characteristics of a Schottky-diode
video detector circuit calculated by the Ritz-
Galerkin method. The effect of varying the
load resistance R; is shown. The diode
parameters are

I = 10%A
A = 40V!
R, =1Q,
while the circuit parameters are
R, =50 Q
L =0

The small circles indicate the results of Spice
simulations for R, = 10 kQ .

COMPARISON WITH PIECEWISE-LINEAR ANALYSIS

If the diode is represented as a resistor R, in series with
a switch that is open for reverse bias (v=0) and closed for
forward bias (i>0), then it is found that the relation between
P, and V,is

v, = BR.P, (15)

where a = V,/Vg is the solution of

1-a®> = a[nb + arccosa]. (16)

The resulting true-linear-law response, towards which the
responses predicted by the RG method are asymptotic for P,
— o, is also shown in Fig. 2.
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Figure 3. Calculated dependence of the voltage
sensitivity y, on the incident power level. The
device and circuit parameters are the same as
for Fig. 2.

SUMMARY AND CONCLUSIONS

The Ritz-Galerkin method provides a closed-form
solution for the full dynamic range of detector circuits, from
"square-law" to "linear", including the effects of video loading
and bias current. Greater-than-square-law slopes are seen
under certain conditions, in agreement with numerical simula-
tions. At high input levels the results approach the predictions
of a piecewise-linear analysis.
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